

🕀 www.studentbro.in

\mathcal{A} ssignment

			Atomic structure
The Bohr's model of ato	oms	ſ	[CBSE PMT 1993, 2004; MP PMT 2004]
(a) Assumes that the ar	ngular momentum of electrons	is quantized	
(b) Uses Einstein's pho	to-electric equation		
(c) Predicts continuous	emission spectra for atoms		
(d) Predicts the same e	mission spectra for all types o	f atoms	
In an orbital motion, th	e angular	momentum vector	is
(a) Along the radius ve	ctor	(b) Parallel to the li	inear momentum
(c) In the orbital plane		(d) Perpendicular to	o the orbital plane
The colour of the second	d line of Balmer series is		[J & K CET 2004]
(a) Blue	(b) Yellow	(c) Red	(d) Violet
If the ionization energy to the next higher state		eV, the energy require	ed to excite it from the ground state
(a) 3.4 <i>eV</i>	(b) 10.2 <i>eV</i>	(c) 12.1 <i>eV</i>	(d) 1.5 <i>eV</i>
If <i>r</i> is the radius of the l	lowest orbit of Bohr's model or	f hydrogen atom, the ra	adius of next higher energy orbit is[
(a) 4 <i>r</i>	(b) 9 <i>r</i>	(c) 16 <i>r</i>	(d) 2 <i>r</i>
The kinetic energy of ar	n electron revolving around a 1	nucleus will be	
(a) Four times of P.E.	(b) Double of P.E.	(c) Equal to P.E.	(d) Half of its P.E.
Which state of triply i	onised Beryllium (Be^{+++}) has	s the same orbital rad	ius as that of the ground state of
hydrogen	[KCET 2004]		e e e e e e e e e e e e e e e e e e e
(a) $n = 1$	(b) <i>n</i> = 2	(c) <i>n</i> = 3	(d) $n = 4$
An α -particle of energy approach is of the order	_	0° by a fixed uranium	nucleus. The distance of the closest [IIT-JEE 1981; AIEEE 2004]
(a) 1 Å	(b) 10^{-10} cm	(c) 10^{-12} cm	(d) $10^{-15} cm$
Dalton's atomic theory	was in accordance with		[AFMC 2001, 2004]
(a) Conservation of ene	ergy (b) Conservation of mass	(c) Conservation of	f charge (d) None of these
• The energy of H_2 atom	in its ground state is – 13.6 eV	7. The energy correspon	nding to first excitation state is
		[CBSE 1993; CBSE 1	1996, 2001; AFMC 2002; MP PET 2003]

CLICK HERE

Get More Learning Materials Here : 💻

50	ritonne structure			
11.	(a) $-3.4 eV$ The time of revolution of	(b) $3.4 eV$	(c) - 1.5 eV eus of charge Ze in n^{th} Bohr	(d) 20.2 <i>eV</i> orbit is directly proportional to [MP P
1.			-	
	(a) <i>n</i>	(b) $\frac{n^3}{Z^2}$	(c) $\frac{n^2}{Z}$	(d) $\frac{Z}{n}$
2.	An electron in the $n = 1$ of	rbit of hydrogen atom is b	ound by 13.6 <i>eV</i> energy is re	quired to ionize, it is
	(a) 13.6 <i>eV</i>	(b) 6.53 eV	(c) 5.4 <i>eV</i>	(d) 1.51 <i>eV</i>
3.	In the lowest energy leve	l of hydrogen atom, the ele	ectron has the angular mom	entum
			[Similar to (DCI	E 2001); MP PET 1997; BCECE 2003]
	(a) π/h	(b) <i>h</i> / <i>π</i>	(c) <i>h</i> /2 <i>π</i>	(d) $2\pi/h$
ŀ	According to Bohr's theor will be	ry the moment of momentu	Im of an electron revolving	in second orbit of hydrogen atom
				[MP PET 1999; KCET 2003]
	(a) 2 <i>π</i> h	(b) <i>π</i> h	(c) $\frac{h}{\pi}$	(d) $\frac{2h}{\pi}$
5.	Which of the following tr	ansition will have highest	emission wavelength	
	(a) $n = 2$ to $n = 1$	(b) $n = 1$ to $n = 2$	(c) $n = 2$ to $n = 5$	(d) $n = 5$ to $n = 2$
6.	When the wave of hydrog	gen atom comes from infin	ity into the first orbit then t	he value of wave number is [RPET 20
	(a) 109700 cm ⁻¹	(b) 1097 cm ⁻¹	(c) 109 cm^{-1}	(d) None of these
7.	In which of the following	systems will the radius of	The first orbit $(n = 1)$ be mi	nimum[Kerala PET 2002; CBSE PMT 20
	(a) Single ionized helium	(b) Deuterium atom	(c) Hydrogen atom	(d) Double ionized lithium
3.	Which of the following at	oms has the lowest ionizat	tion potential	
	(a) $\frac{16}{8}O$	(b) $\frac{14}{7}N$	(c) $^{133}_{55}Cs$	(d) $\frac{40}{18} Ar$
).	In the Bohr's model of hy quantum state is	ydrogen atom, the ratio of	the kinetic energy to the to	otal energy of the electron in <i>n</i> th
	quantum state 15			[BHU 2002; RPMT 2002; 2003]
	(a) – 1	(b) + 1	(c) – 2	(d) 2
).	In the Bohr's hydrogen a quantum number)	tom model, the radius of t	he stationary orbit is direct	tly proportional to $(n = principle)$
		[MNR 1988; SCRA 19	994; CBSE 1996; AIIMS 1999; I	DCE 2002; RPMT 2002; RPMT 2003]
	(a) n^{-1}	(b) <i>n</i>	(c) n^{-2}	(d) n^2
1.	With the increase in prillevels	incipal quantum number,	the energy difference betw	ween the two successive energy
	(a) Increases		(b) Decreases	[UPSEAT 2000; RPET 2003]
	(c) Remains constant			ses and sometimes decreases
2.		ory of Rutherford model t	he path of electron will be	[AFMC 2003]
	(a) Parabolic	(b) Hyperbolic	(c) Circular	(d) Elliptical
3.	Bohr's theory was modifi			[AFMC 2003]
	(a) Rutherford and Soddy	y (b) Planck	(c) Hund	(d) Somerfield
4.	Minimum excitation pote	ntial of Bohr's first orbit i	n hydrogen atom is	
	(a) 13.6 V	(b) 3.4 V	(c) 10.2 V	(d) 3.6 V
5.	To explain his theory, Bol	hr used		
-	(a) Conservation of linea		(b) Conservation of a	ngular momentum
				-

Get More Learning Materials Here : 💻

(c) Conservation of quantum frequency (d) Conservation of energy A hydrogen atom and a Li^{++} ion are both in the second excited state. If l_H and l_{Li} are their respective electronic 26. angular momenta, and E_H and E_{II} their respective energies, then (a) $l_H > l_{Li}$ and $|E_H| > |E_{Li}|$ (b) $l_H = l_{Li}$ and $|E_H| < |E_{Li}|$ (c) $l_H = l_{Li}$ and $|E_H| > |E_{Li}|$ (d) $l_H < l_{Li}$ and $|E_H| < |E_{Li}|$ 27. The radius of the first orbit of the hydrogen atom is a_0 . The radius of the second orbit will be (a) $4a_0$ (b) 6*a*₀ (c) $8a_0$ (d) $10a_0$ Energy of an electron in an excited hydrogen atom is - 3.4 eV. Its angular momentum will be 28. $(h = 6.626 \times 10^{-34} J - s)$ [UPSEAT 1999; Kerala PET 2002] (b) $1.51 \times 10^{-31} J$ sec (c) $2.11 \times 10^{-34} J \text{ sec}$ (a) $1.11 \times 10^{34} J$ sec (d) $3.72 \times 10^{-34} J \text{ sec}$ Consider the spectral line resulting from the transition from n = 2 to n = 1 in atoms and ions given below. The 29. shortest wavelength is produced by [Kerala PET 2002] (c) Singly ionized helium (d) Doubly ionized lithium (a) Hydrogen atom (b) Deuterium atom Find the correct statement about Bohr atom model 30. [TNPCEE 2002] (a) It could not explain about the spectral lines of hydrogen atoms (b) Electrostatic force of attraction between the nucleus and the electron is $\frac{-z^2me^4}{8c^2n^2h^2}$ (c) Bohr used the planck's constant to explain his two postulates (d) The centripetal force on the electron is $\frac{ze^2}{4\pi\varepsilon_0 r_c^2}$ In a hydrogen atom what will be the radius of 5th orbit if the radius of the first orbit is 0.53Å 31. [TNPCEE 2002] (a) 2.65 Å(b) 5.3 Å(d) 13.25 Å (c) 0.106 Å The velocity of an electron in the inner-most orbit of an atom is 32. [AFMC 2002] (c) Lowest (d) Mean (a) Zero (b) Highest An electron in revolving round a proton in an orbit of radius 5.3×10^{-9} cm . The speed of electron will be [RPET 2002] 33. (a) $2.2 \times 10^6 m / s$ (b) $2.2 \times 10^8 m / s$ (c) $2.2 \times 10^5 m./s$ (d) $2.2 \times 10^4 m / s$ If elements corresponding to n > 5 do not exist, the number of possible elements will be [RPMT 2002] 34. (a) 60 (b) 5 (c) 75 (d) 110 The possible quantum number for 3d electron are 35. [MP PMT 2002] (b) $n = 3, l = 2, m_l = +2, m_s = -\frac{1}{2}$ (a) $n = 3, l = 1, m_l = +1, m_s = -\frac{1}{2}$ (c) $n = 3, l = 1, m_l = -1, m_s = -\frac{1}{2}$ (d) $n = 3, l = 0, m_l = +1, m_s = -\frac{1}{2}$ 36. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is [MP PMT 2000; MH CET 2002] (a) $\frac{e^2}{2\varepsilon_0 hc}$ (b) $\frac{2e^2\varepsilon_0}{hc}$ (c) $\frac{e^3}{2\varepsilon_0 hc}$ (d) $\frac{2\varepsilon_0 hc}{e^2}$ In hydrogen atom, when electron jumps from second to first orbit, then energy emitted is 37. (b) - 27.2 *eV* (a) - 13.6 *eV* (c) - 6.8 eV (d) None of these

38. The wavelength of light emitted from second orbit to first orbits in a hydrogen atom is

CLICK HERE

Get More Learning Materials Here :

	(a) $1.215 \times 10^{-7} m$	(b) $1.215 \times 10^{-5} m$	(c) $1.215 \times 10^{-4} m$	(d) $1.215 \times 10^{-3} m$
9.	Whenever a hydrogen a	atom emits a photon in the Baln	ner series	[KCET 2002]
	(a) It need not emit an	y more photon	(b) It may emit anoth	er photon in the Paschen series
		er photon in the Lyman series	•	er photon in the Balmer series
).		ne of Balmer series in H_2 atom	is v_0 . The frequency of	line emitted by singly ionised He
	atom is			[CPMT 2002]
	(a) $2v_0$	(b) $4v_0$	(c) $v_0 / 2$	(d) $v_0 / 4$
•	When the electron in the λ . When the electrons	he hydrogen atom jumps from 2 jump from 3 rd orbit to 1 st orbit,	n ^d orbit to 1 st orbit, the v the wavelength of emitt	vavelength of radiation emitted is ed radiation would be [MP PMT :
	(a) $\frac{27}{32} \lambda$	(b) $\frac{32}{27}\lambda$	(c) $\frac{2}{3}\lambda$	(d) $\frac{3}{2}\lambda$
_	52	27	U	2
2.	The Lyman series of hy	drogen spectrum lies in the reg		
				MP PMT 1995, 2000; UPSEAT 2002]
	(a) Infrared	(b) Visible	(c) Ultraviolet	(d) Of X-rays
3.	The hydrogen atom cas statements is correct	n give spectral lines in the ser	ies, Lyman, Balmer and	Paschen. Which of the following
			[(CBSE 1990; CPMT 1997; AFMC 2002]
	(a) Lyman series is in t	the infrared region	(b) Balmer series is in	n the visible region (partly)
	(c) Balmer series is sol	lely in the ultraviolet region	(d) Paschen series is	in the visible region
1.	-			he ground state are excited by l by hydrogen atoms according to
4.	-		he spectral lines emitted	•
1.	monochromatic radiati		he spectral lines emitted	l by hydrogen atoms according to
	monochromatic radiati Bohr's theory will be (a) One	on of photon energy 12.1 eV. T	he spectral lines emitted [CPMT 1990; CBSE 199 (c) Three	l by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four
	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi	on of photon energy 12.1 <i>eV</i> . T	he spectral lines emitted [CPMT 1990; CBSE 199 (c) Three	l by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four
5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 <i>eV</i>	on of photon energy 12.1 <i>eV</i> . T (b) Two red to take out the only one ele	he spectral lines emitted [CPMT 1990; CBSE 199 (c) Three ctron from ground state (c) 27.2 eV	l by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of <i>He</i> ⁺ is [Orissa
4. 5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 <i>eV</i>	on of photon energy 12.1 <i>eV</i> . T (b) Two red to take out the only one ele (b) 54.4 <i>eV</i>	he spectral lines emitted [CPMT 1990; CBSE 199 (c) Three ctron from ground state (c) 27.2 eV	l by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of <i>He</i> ⁺ is [Orissa (d) 6.8 <i>eV</i>
5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 eV The graph between way (a) $\bigvee_{V \to U}^{\circ}$ (a) $\bigvee_{V \to U}^{\circ}$ (a) $\bigvee_{V \to U}^{\circ}$ (b) $\bigvee_{V \to U}^{\circ}$ (c) $\bigvee_{V \to U}^{\circ}$	(b) Two (b) Two red to take out the only one ele (b) 54.4 eV ve number (ν) and angular freq (b) $\left. \begin{array}{c} \uparrow \\ \uparrow \\ \downarrow \\$	the spectral lines emitted [CPMT 1990; CBSE 199 (c) Three ctron from ground state (c) 27.2 eV uency (ω) is $\begin{pmatrix} c \\ r \\$	<pre>d by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He⁺ is [Orissa (d) 6.8 eV [AIIMS 2002] (d)</pre>
5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 eV The graph between war (a) $\downarrow_{J_{U}}^{\bullet}$ (a) $\downarrow_{J_{U}}^{\bullet}$ (a) $\downarrow_{J_{U}}^{\bullet}$ (b) $\downarrow_{J_{U}}^{\bullet}$ (c) \downarrow	(b) Two red to take out the only one ele (b) 54.4 eV ve number (ν) and angular freq (b) $\stackrel{\uparrow}{14.4} \stackrel{(v)}{=} ($	he spectral lines emitted [CPMT 1990; CBSE 199 (c) Three ctron from ground state (c) 27.2 eV uency (ω) is (c) $e^{\text{Indentify}}_{\text$	a by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He^+ is [Orissa (d) 6.8 eV [AIIMS 2002] (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002]
5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 <i>eV</i> The graph between way (a) $\frac{13.6 \text{ eV}}{1000 \text{ eV}}$ The graph between way (a) $\frac{13.6 \text{ eV}}{1000 \text{ eV}}$ The energy of an electron (a) $E_n = -\frac{4\pi^2 mke^2}{n^2h^2}$ If radiations of all w	(b) Two (b) Two red to take out the only one ele (b) 54.4 eV ve number (v) and angular freq (b) $\frac{1}{4} \sum_{u=1}^{N} \frac{1}{\sqrt{2}} \sum_{u=1}^{N} \frac{1}{\sqrt{2}}$ ron in the <i>n</i> th orbit of hydrogen and the function of the fu	the spectral lines emitted [CPMT 1990; CBSE 1990 (c) Three (c) Three ctron from ground state (c) 27.2 eV uency (ω) is (c) $\frac{1}{P} \sum_{k=1}^{N} \frac{1}{2} \sum_{k=$	a by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He^+ is [Orissa (d) 6.8 eV [AIIMS 2002] (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002] (d) f_{He}^+ [Orissa [AIIMS 2002]
5.	monochromatic radiati Bohr's theory will be (a) One Minimum energy requi JEE 2002] (a) 13.6 <i>eV</i> The graph between way (a) $\frac{13.6 \text{ eV}}{1000 \text{ eV}}$ The graph between way (a) $\frac{13.6 \text{ eV}}{1000 \text{ eV}}$ The energy of an electron (a) $E_n = -\frac{4\pi^2 mke^2}{n^2h^2}$ If radiations of all w	(b) Two (b) Two red to take out the only one ele (b) 54.4 eV ve number (ν) and angular freq (b) $\frac{1}{4} \frac{1}{1000} \frac{1}{100$	the spectral lines emitted [CPMT 1990; CBSE 1990 (c) Three (c) Three ctron from ground state (c) 27.2 eV uency (ω) is (c) $\frac{1}{P} \sum_{k=1}^{N} \frac{1}{2} \sum_{k=$	I by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He^+ is [Orissa (d) 6.8 eV [AIIMS 2002] (d) $f_{W} = \frac{1}{2\pi^2 mk^2 e^2}$ (d) $E_n = -\frac{n^2 h^2}{2\pi^2 mk^2 e^2}$ through hydrogen gas at room [KCET 2001]

Get More Learning Materials Here : 📕

r www.studentbro.in

Atomic structure 71 In any excited state of hydrogen atom if m = 5, then value of n, i, m, s will be [RPMT 2001] 49. (a) 5, 5, 5, -1/2(b) 7, 7, 5, +1/2(c) 6, 6, 5, -1/2(d) 8, 7, 5, +1/2 50. Which of the following is true for number of spectral lines in going form Lyman series to Pfund series[RPET 2001] (a) Increases (b) Decreases (c) Unchanged (d) May decreases or increases The first line in the Lyman series has wavelength λ . The wavelength of the first line in Balmer series is 51. [CPMT 1998; MH CET (Med.) 2001] (c) $\frac{5}{27}\lambda$ (a) $\frac{2}{9}\lambda$ (b) $\frac{9}{2}\lambda$ (d) $\frac{27}{5}\lambda$ Four lowest energy levels of *H*-atom are shown in the figure. The number of possible emission lines would be [MP PM 52. n = 3(a) 3 (b) 4 (c) 5 n = 1(d) 6 The energy of hydrogen atom in its ground state is - 13.6 eV. The energy of the level corresponding to the 53. quantum number *n* is equal 5 is (b) - 2.72 *eV* (c) $-0.85 \, eV$ (a) - 5.40 eV (d) - 0.54 eV The ionisation potential of hydrogen is 13.6 eV. Then the energy released when an electron jumps from n = 3 to 54. n = 2 orbit, is [KCET (Engg.) 2001] (a) 2.89 eV (b) 1.89 eV (c) 3.89 eV (d) 4.89 eV The transition from the state n = 4 to n = 3 in a hydrogen-like atom results in ultraviolet radiation. Infrared 55. radiation will be obtained in the transition (c) $4 \rightarrow 2$ (a) $2 \rightarrow 1$ (b) $3 \rightarrow 2$ (d) $5 \rightarrow 4$ 56. Orbital acceleration of electron is (a) $\frac{n^2h^2}{4\pi^2m^2r^3}$ (b) $\frac{n^2h^2}{2n^2r^3}$ (c) $\frac{4n^2h^2}{\pi^2m^2r^3}$ (d) $\frac{4n^2h^2}{4\pi^2m^2r^3}$ 57. Which of the following transitions in a hydrogen atom emits photon of the highest frequency[MP PET 1996; CBSE 2000; D (c) n = 2 to n = 6(a) n = 1 to n = 2(b) n = 2 to n = 1(d) n = 6 to n = 2Radius of the first orbit of the electron in a hydrogen atom is 0.53 Å. So, the radius of the third orbit will be [Kerala (I 58. (a) 2.12 Å (b) 4.77 Å (c) 1.06 Å (d) 1.59 Å The diagram shows the path of four α -particles of the same energy being scattered by the nucleus of an atom 59. simultaneously. Which of these are/is not physically possible (a) 3 and 4 (b) 2 and 3 (c) 1 and 4 (d) 4 only An electron jumps from 5th orbit to 4th orbit of hydrogen atom. Taking the Rydberg constant as 10⁷ per metre. 60. What will be the frequency of radiation emitted (a) $6.75 \times 10^{12} Hz$ (b) $6.75 \times 10^{14} Hz$ (c) $6.75 \times 10^{13} Hz$ (d) None of these

Get More Learning Materials Here :

🕀 www.studentbro.in

- 61. The electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$ where n_1 and n_2 are the principal quantum numbers of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. The possible values of n_1 and n_2 are [IIT 1998; KCET 2001] (a) $n_1 = 4, n_2 = 2$ (b) $n_1 = 8, n_2 = 2$ (c) $n_1 = 8, n_2 = 1$ (d) $n_1 = 6, n_2 = 3$ For principal quantum number n = 3, the possible values of orbital quantum number 'l' are [MP PET/PMT 2001] 62. (a) 1, 2, 3 (b) 0, 1, 2, 3 (c) 0, 1, 2 (d) - 1, 0, + 1 An electron moves towards a nucleus at the focus of a an elliptical orbit with velocity V. Its angular momentum 63. with respect to nucleus is [RPMT 2001]
 - (a) Always zero
 - (b) Always remains constant
 - (c) Changes with time
 - (d) Can not determined
- The total energy of the electron in the hydrogen atom in the ground state is -13.6 eV. The kinetic energy of this 64. electron is

(a) – 13.6 <i>eV</i> (b) 0	(c) 6.8 eV	(d) 13.6 eV	

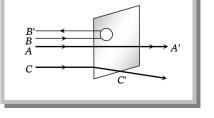
- What change in energy per mole of atoms will be associated with an atomic transition giving rise to radiation 65. at 1 Hz
 - (a) $0.399 \times 10^{-10} J mol^{-1}$ (b) $9.390 \times 10^{-10} J mol^{-1}$ (c) $3.990 \times 10^{-10} J mol^{-1}$ (d) None of these [J & K CET 2000]

66. According to Bohr's theory the radius of electron orbit is proportional to

	(a) $Z^2 n^2$	(b) $\frac{Z^2}{n^2}$	(c) $\frac{Z^2}{n}$	(d) $\frac{n^2}{Z}$
67.	According to Bohr's postul	ate which of the following tak	ke discrete values	[J & K CET 2000]
	(a) Kinetic energy	(b) Potential energy	(c) Angular momentum	(d) Linear momentum
68.	Who indirectly determined	l of the mass of the electron b	y measuring the charge of t	the electrons [CBSE PMT 2000]
	(a) Rutherford	(b) Einstein	(c) Thomson	(d) Millikan
69.	Who discovered spin quan	tum number		[RPMT 2000]
	(a) Unlenbeck and Goudsn	nit	(b)	Neil's Bohr
	(c) Zeeman		(d) Sommerfield	

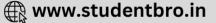
In Rutherford scattering experiment, what will be the correct angle for α scattering for an impact parameter b 70. = 0

(a) 90°	(b) 270°
---------	----------

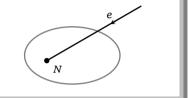

A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A', B' and C' of the 71. transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in [CPMT 1986, 88; RPET 2000]

(c) 0°

- (a) *B*' will be minimum and in *C*' maximum
- (b) A' will be maximum and in B' minimum


(c) A' will be minimum and in B' maximum

(d) C' will be minimum and in B' maximum


Get More Learning Materials Here : 🌉

[CBSE 1994; JIPMER 2000]

(d) 180°

[EAMCET (Med.) 1998; JIPMER 2000]

[BHU Med. 2000]

Regional www.studentbro.in

2.	The radius of hydro have a radius of 21.		quantum number n of the f	inal state of the atom[CBSE 1994;
	(a) $n = 4$	(b) <i>n</i> = 2	(c) <i>n</i> = 16	(d) $n = 3$
•	The de-Broglie wave	elength of thermal neutrons is o	f the order of the	
	(a) Distance betwee	en atoms in crystals	(b) Size of the nucleu	s
	(c) Bohr's radius		(d) Size of a grain	
•	As per Bohr model t $Li^{(z=3)}$ atom is	he minimum energy required to	o remove an electron from t	he ground state of doubly ionised
				[IIT-JEE 1997; MH CET 2000]
	(a) 1.51 <i>eV</i>	(b) 13.6 <i>eV</i>	(c) 4.08 eV	(d) 122.4 <i>eV</i>
•	The concept of stati	onary orbits was proposed by		[Pb. PMT 2000]
	(a) Neil Bohr	(b) J.J. Thomson	(c) Rutherford	(d) I. Newton
•	The electron in a l following statement		ition from an excited state	e to ground state. Which of the
				[IIT-JEE (Screening) 2000]
	(a) Its kinetic energ	gy increases and its potential an	d total energies decrease	
	(b) Its kinetic energ	gy decreases, potential energy ir	ncreases and its total energy	y remains same
	(c) Its kinetic and t	otal energies decrease and its p	otential energy increases	
	(d) Its kinetic, poter	ntial and total energies decrease	2	
•	same charge as the	ade up of a proton and a hypoth electron. Apply Bohr atom mod	netical particle of double the del and consider all possibl	e mass of the electron but having e transitions of this hypothetical emitted has wavelength λ (given
	same charge as the particle to the first	ade up of a proton and a hypoth electron. Apply Bohr atom mod	netical particle of double the del and consider all possibl elength photon that will be	-
•	same charge as the particle to the first	ade up of a proton and a hypoth electron. Apply Bohr atom moo excited level. The longest wave	netical particle of double the del and consider all possibl elength photon that will be	e transitions of this hypothetical emitted has wavelength λ (given
	same charge as the particle to the first in the terms of Rydb (a) 9/5 <i>R</i>	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato	netical particle of double the del and consider all possibl elength photon that will be com) equal to (c) 18/5 <i>R</i>	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000]
	same charge as the particle to the first in the terms of Rydb (a) 9/5 <i>R</i> According to the Rub	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) 36/5 <i>R</i> therford's atomic model, the ele	netical particle of double the del and consider all possibl elength photon that will be com) equal to (c) 18/5 <i>R</i>	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R
•	same charge as the particle to the first in the terms of Rydb (a) 9/5 <i>R</i> According to the Rub (a) Stationary	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) 36/5 <i>R</i> therford's atomic model, the ele (b) Not stationary	hetical particle of double the del and consider all possible elength photon that will be com) equal to (c) 18/5 <i>R</i> fectrons inside the atom are (c) Centralized	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000]
•	same charge as the particle to the first in the terms of Rydb (a) 9/5 <i>R</i> According to the Rub (a) Stationary	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) 36/5 <i>R</i> therford's atomic model, the ele	hetical particle of double the del and consider all possible elength photon that will be com) equal to (c) 18/5 <i>R</i> fectrons inside the atom are (c) Centralized	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these
•	same charge as the particle to the first in the terms of Rydb (a) $9/5 R$ According to the Rub (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the B	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant R for hydrogen ato (b) 36/5 R therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) 10^{-6} cm	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000]
	same charge as the particle to the first in the terms of Rydb (a) $9/5 R$ According to the Rub (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the B	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant R for hydrogen ato (b) 36/5 R therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) 10^{-6} cm Bohr orbit in the ground state	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10 ⁻⁷ cm Å. The radius of the orbit of the
•	same charge as the particle to the first in the terms of Ryde (a) $9/5 R$ According to the Rue (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the F electron in the third (a) $8 Å$	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant R for hydrogen ato (b) 36/5 R therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) 10^{-6} cm Bohr orbit in the ground state l excited state of He^+ will be (b) 4 Å	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) 0.5 Å	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10 ⁻⁷ cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å
	same charge as the particle to the first in the terms of Ryde (a) $9/5 R$ According to the Rue (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the F electron in the third (a) $8 Å$	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant R for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) 0.5 Å	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10^{-7} cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec)
•	same charge as the particle to the first in the terms of Rydt (a) $9/5 R$ According to the Rut (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the F electron in the third (a) $8 \AA$ What will be the ang	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be (b) $4 Å$ gular momentum of a electron, i	hetical particle of double the del and consider all possible elength photon that will be form) equal to (c) $18/5 R$ for the atom are (c) Centralized he order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) 0.5 Å if energy of this electron in	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10 ⁻⁷ cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000]
•	same charge as the particle to the first in the terms of Rydt (a) $9/5 R$ According to the Ruf (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the F electron in the third (a) $8 Å$ What will be the ang	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be (b) $4 Å$ gular momentum of a electron, i (b) 2.1×10^{-34}	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) $0.5 Å$ if energy of this electron in (c) 3.15×10^{-34}	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10 ⁻⁷ cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000] (d) -2.1×10^{-34}
•	same charge as the particle to the first in the terms of Ryde (a) $9/5 R$ According to the Rue (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the Helectron in the third (a) $8 Å$ What will be the angular (a) 1.05×10^{-34} The ratio of the long	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be (b) $4 Å$ gular momentum of a electron, i (b) 2.1×10^{-34}	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ ectrons inside the atom are (c) Centralized the order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) 0.5 Å if energy of this electron in (c) 3.15×10^{-34} Brackett series of hydrogen	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10^{-7} cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000] (d) -2.1×10^{-34} spectra is [EAMCET (Engg.) 2000]
•	same charge as the particle to the first in the terms of Rydt (a) $9/5 R$ According to the Ruf (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the F electron in the third (a) $8 Å$ What will be the ang	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be (b) $4 Å$ gular momentum of a electron, i (b) 2.1×10^{-34}	hetical particle of double the del and consider all possible elength photon that will be om) equal to (c) $18/5 R$ fectrons inside the atom are (c) Centralized he order (c) $10^{-4} cm$ of hydrogen atom is 0.5 A (c) $0.5 Å$ if energy of this electron in (c) 3.15×10^{-34}	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10^{-7} cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000] (d) -2.1×10^{-34}
•	same charge as the particle to the first in the terms of Ryde (a) $9/5 R$ According to the Rue (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the H electron in the third (a) $8 Å$ What will be the ang (a) 1.05×10^{-34} The ratio of the long (a) $\frac{25}{9}$	ade up of a proton and a hypoth electron. Apply Bohr atom mod excited level. The longest wave berg constant <i>R</i> for hydrogen ato (b) $36/5 R$ therford's atomic model, the ele (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state l excited state of He^+ will be (b) $4 Å$ gular momentum of a electron, i (b) 2.1×10^{-34} gest to shortest wavelengths in 1	hetical particle of double the del and consider all possible elength photon that will be form) equal to (c) $18/5 R$ for trons inside the atom are (c) Centralized the order (c) $10^{-4} cm$ of hydrogen atom is $0.5 A$ (c) $0.5 Å$ if energy of this electron in (c) 3.15×10^{-34} Brackett series of hydrogen (c) $\frac{9}{5}$	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10^{-7} cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000] (d) -2.1×10^{-34} spectra is [EAMCET (Engg.) 2000]
· · · · · · · · · · · · · · · · · · ·	same charge as the particle to the first in the terms of Ryde (a) $9/5 R$ According to the Rue (a) Stationary The radius of hydrog (a) $10^{-8} cm$ The radius of the H electron in the third (a) $8 Å$ What will be the ang (a) 1.05×10^{-34} The ratio of the long (a) $\frac{25}{9}$	ade up of a proton and a hypoth electron. Apply Bohr atom mode excited level. The longest wave being constant <i>R</i> for hydrogen atom (b) $36/5 R$ therford's atomic model, the elec (b) Not stationary gen atom in ground state is of th (b) $10^{-6} cm$ Bohr orbit in the ground state lexcited state of He^+ will be (b) $4 Å$ gular momentum of a electron, is (b) 2.1×10^{-34} gest to shortest wavelengths in 1 (b) $\frac{17}{6}$	hetical particle of double the del and consider all possible elength photon that will be form) equal to (c) $18/5 R$ for trons inside the atom are (c) Centralized the order (c) $10^{-4} cm$ of hydrogen atom is $0.5 A$ (c) $0.5 Å$ if energy of this electron in (c) 3.15×10^{-34} Brackett series of hydrogen (c) $\frac{9}{5}$	e transitions of this hypothetical emitted has wavelength λ (given [IIT-JEE (Screening) 2000] (d) 4/R [KCET (Med.) 2000] (d) None of these [EAMCET 1994; MH CET 2000] (d) 10^{-7} cm Å. The radius of the orbit of the [MP PMT 2000] (d) 0.25 Å H-atom is 1.5 eV (in J-sec) [RPMT 2000] (d) -2.1×10^{-34} spectra is [EAMCET (Engg.) 2000] (d) $\frac{4}{3}$

Get More Learning Materials Here : 💻

	(a) Second line of Lymar series	1 series		(b) Second line of Paschen
	(c) Second line of Balme	r series	(d)	First line of Pfund series
5.	Calculate the series limit	t of the Lyman series of hydr	ogen atom	[BHU Med. 2000]
	(a) $9.1176 \times 10^{-6} cm$	(b) 10968 cm	(c) $1.2157 \times 10^{-5} cm$	(d) 82259 cm
5.	Which of the following p	henomena suggests the pres	ence of electron energy level	s in atoms [JIPMER 1999]
	(a) Radio active decay	(b) Isotopes	(c) Spectral lines	(d) α -particles scattering
' .		of <i>H</i> -atom is 13.6 V when it of emission lines will be (acc	u	e by monochromatic radiations [RPET 1999]
	(a) 10	(b) 8	(c) 6	(d) 4
3.	Which of the following s	pectral series in hydrogen at	om give spectral line of 4860	DÅ [Roorkee 1999]
	(a) Lyman	(b) Balmer	(c) Paschen	(d) Bracket
	The energy required to e	xcite an electron from the g	ound state of hydrogen atom	n to the first excited state, is [Pb
	(a) $1.602 \times 10^{-14} J$	(b) $1.619 \times 10^{-16} J$	(c) $1.632 \times 10^{-18} J$	(d) $1.656 \times 10^{-20} J$
•	The ratio of longest way spectrum of hydrogen is	velength and the shortest w	avelength observed in the fi	ve spectral series of emission
				[MP PET 1999]
	(a) $\frac{4}{3}$	(b) $\frac{525}{376}$	(c) 25	(d) $\frac{900}{11}$
		iment, the number of partic angle 60° and 120° will be	les scattered at 90° angle ar	e 28 per <i>min</i> , then number of [UPSEAT 1999]
	(a) 112/min., 12.5/min	(b) 100/min., 200/min	(c) 50/min., 12.5/min	(d) 117/min., 25/min
•	When the hydrogen atom	n is changed from its ground	state to excited state	[AMU 1999]
	(a) P.E. increases but K.	E. decreases	(b) K.E. increases but P.	E. decreases
	(c) P.E. increases		(d) K.E. increases	
•	The velocity of an electroelectron in its fifth orbit	will be		c = 11) is v. the velocity of an [MP PET 1999]
	(a) <i>v</i>	(b) $\frac{22}{5}v$	(c) $\frac{5}{2}v$	(d) $\frac{2}{5}v$
	The ratio between poten	0	ty of the electron in $(n - 1)^{\text{th}}$	orbit of hydrogen atom is
				[MP PET 1994; KCET 1999]
	(a) – 2	(b) 2	(c) 1	(d) - 1
				quency (<i>n</i> = quantum number)[I
	(a) $n = 2$ to $n = 1$	(b) $n = 4$ to $n = 3$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 2$
•				t wavelength in Bracket series
				[EAMCET (Engg.) 1999]
	(a) 2λ	(b) 4λ	(c) 9λ	(d) 16λ
•			Bohr's model of hydrogen ato	
	(II) Radii of allowed orbi	its of electrons are proportic ich electrons orbit around th	discrete orbits away from th nal to the principal quantum e nucleus in discrete orbits i	

CLICK HERE

Get More Learning Materials Here : 💻

r www.studentbro.in

Atomic structure **75** Select the correct answer using the codes given below [SCRA 1998] (c) I, II and III (d) II, III and IV (a) I and III (b) II and IV 98. The Rydberg constant R for hydrogen is [MP PMT 1998] (a) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{2\pi^2 m e^2}{ch^2}$ (b) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{2\pi^2 m e^4}{ch^2}$ (c) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{c^2 h^2}$ (d) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{ch^3}$ In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the 99. proton and the electron. If a_0 is the radius of the ground state orbit, *m* is the mass and *e* is charge on the electron and ε_0 is the vacuum permittivity, the speed of the electron is [CBSE PMT 1998] (d) $\sqrt{\frac{4\pi\varepsilon_0 a_0 m}{\rho}}$ (c) $\frac{e}{\sqrt{4\pi\varepsilon_0 a_0 m}}$ (b) $\frac{e}{\sqrt{\varepsilon_0 a_0 m}}$ (a) 0 100. The 21 cm radio wave emitted by hydrogen in interstellar space is due to the interaction called the hyperline interaction in atomic hydrogen. The energy of the emitted wave is nearly [CBSE 1998] (a) 10^{-17} Joule (d) 10^{-24} Joule (c) 7×10^{-8} Joule (b) 1 Joule 101. Which one of the series of hydrogen spectrum is in the visible region[RPMT 1999; MP PET 1990; MP PMT 1994; AFMC 1994 (a) Lyman series (b) Balmer series (c) Paschen series (d) Bracket series 102. Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant R and velocity of light C is [KCET 1998] (b) $\frac{RC}{4}$ (d) $\frac{4}{RC}$ (c) 4*RC* (a) *RC* **103.** Hydrogen atom excites energy level from the fundamental state to n = 3. Number of spectral lines, according to Bohr, is [CPMT 1997] (b) 3 (c) 1 (d) 2 (a) 4 **104.** Ionization energy of hydrogen is 13.6 eV. If $h = 6.6 \times 10^{31}$ *J-sec*, the value of *R* will be of the order of [**RPMT 1997**] (a) $10^{10} m^1$ (b) $10^7 m^{-1}$ (c) $10^4 m^{-1}$ (d) $10^{-7} m^{-1}$ 105. In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change[MP PET : (a) From n = 2 to n = 1(b) From n = 3 to n = 1(c) From n = 4 to n = 2(d) From n = 3 to n = 2**106.** The Rutherford α -particle experiment shows that most of the α -particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom[AFMC 1997] (a) Atom is hollow (b) The whole mass of the atom is concentrated in a small centre called nucleus (c) Nucleus is positively charged (d) All of the above **107.** An ionic atom equivalent to hydrogen atom has wavelength equal to 1/4 of the wavelengths of hydrogen lines. the ion will be [RPET 1997] (c) Ne^{9+} (d) Na^{10+} (a) He^+ (b) *Li*⁺⁺ 108. The required energy to detach one electron from Balmer series of hydrogen spectrum is [CPMT 1997] (a) 13.6 eV (b) 10.2 eV (c) 3.4 eV (d) - 1.5 eV 109. Number of spectral lines in hydrogen atom is [CPMT 1997] (c) 15 (d) Infinite (a) 3 (b) 6 110. A hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by (Given Planck constant $h = 6.6 \times 10^{-34} J$ - sec) [MP PET 1995; MP PMT 1997] (c) 2.11×10^{-34} J- sec (a) $1.05 \times 10^{-34} J$ - sec (b) 3.16×10^{-34} J - sec (d) 4.22×10^{-34} J- sec

Get More Learning Materials Here :

The ratio of the frequencies of the long wavelength limits of Lyman and Balmer series of hydrogen spectrum is 111. [Haryana CEE 1996] (a) 27:5 (b) 5:27 (c) 4:1 (d) 1:4 **112.** An electron in hydrogen and one in singly ionised helium atom are excited to the state n = 2. A photon is emitted when these electrons jump back to the ground state in each case. Then [CPMT 1996] (a) Energy of photon is same in both (b) Radiations emitted by helium ion are shifted towards the red as compared to radiation from hydrogen atom (c) Radiations emitted by helium ion are shifted towards the violet as compared to radiations from hydrogen atom (d) None of these 113. Ionisation potential of hydrogen atom is 13.6 eV. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV. The spectral lines emitted by hydrogen atoms according to Bohr's theory will be [CBSE PMT 1996] (b) Two (c) Three (a) One (d) Four 114. According to classical physics, the electron orbit in the hydrogen atom is unstable because [CPMT 1995] (a) The electron is an unstable particle (b) The electron has very high kinetic energy (c) An accelerated electron radiates out E.M. waves (d) An accelerated electron absorbs E.M. waves 115. According to Bohr's theory of the hydrogen atom, the diameter of the first orbit is about [CPMT 1995] (a) 0.1 Å (b) 1 Å (c) 13.6 *Å* (d) 5890 Å 116. The splitting of line into groups under the effect of electric or magnetic field is called [AFMC 1995] (a) Zeeman's effect (b) Bohr's effect (c) Heisenberg's effect (d) Magnetic effect The number of revolutions per second made by an electron in the first Bohr orbit of hydrogen atom is of the 117. order of [AMU 1995] (a) 10²⁰ **(b)** 10¹⁹ (c) 10^{17} (d) 10^{15} **118.** Which of the following statements about the Bohr model of the hydrogen atom is false (a) Acceleration of electron in n = 2 orbit is less than that in n = 1 orbit (b) Angular momentum of electron in n = 2 orbit is more than that in n = 1 orbit (c) Kinetic energy of electron in n = 2 orbit is less than that in n = 1 orbit (d) Potential energy of electron in n = 2 orbit is less than that in n = 1 orbit **119.** An electron makes a transition from orbit n = 4 to the orbit n = 2 of a hydrogen atom. The wave number of the emitted radiations (R = Rydberg's constant) will be (a) $\frac{16}{3R}$ (b) $\frac{2R}{16}$ (c) $\frac{3R}{16}$ (d) $\frac{4R}{16}$ **120.** Energy levels A, B, C of a certain atom corresponding to increasing values of energy *i.e.*, $E_A < E_B < E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct [CBSE 1990; AIIMS 1995] (a) $\lambda_3 = \lambda_1 + \lambda_2$ С (b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ λ_1 R λ_2 λ_3 (c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

(d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$

121. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (*e.g.*, line no. 5 arises from the transition from level *B* to *A*). The following spectral lines will also occur in the absorption spectrum [CBSE 1995]

			(c	
	(a) 1, 4, 6			В	
	(b) 4, 5, 6			A	
	(c) 1, 2, 3		$\frac{\downarrow \downarrow \downarrow}{1 \ 2 \ 3 \ 4 \ 5 \ 6}$	x	
	(d) 1, 2, 3, 4, 5, 6		1 2 3 4 5 0	_	
122.		uantum numbers n , l and m_l	are same, then the maxin	mum number of	electrons that
	can be present there are				[RPMT 1995]
	(a) 2	(b) $2n^2$	(c) $(2l+1)$	(d) $2(2l+1)$	
123.	Which one of these is non-	-divisible			[KCET 1994]
	(a) Nucleus	(b) Photon	(c) Proton	(d) Atom	
124.	The fact that protons carry	y energy was established by		[ISM	Dhanbad 1994]
	(a) Doppler's effect	(b) Compton's effect	(c) Bohr's theory	(d) Diffractio	on of light
125.	The ratio of the speed of t	he electrons in the ground sta	te of hydrogen to the spee	d of light in vacu	uum is [MNR 1994]
	(a) 1/2	(b) 2/137	(c) 1/137	(d) 1/237	
126.	-	redicts that the absorption spe			[CBSE 1993]
	(a) Accelerating electrons		(b) Decelerating electron		1 1 -
40-	(c) Electron going to high		(d) Electrons going to lo	wer momentum	
127.	-	m excited hydrogen atoms, be	ecause		[RPET 1993]
	(a) Hydrogen atoms conta		J J		
		ydrogen atoms are very closed	-		
	.,	in the nucleus of the <i>H</i> -atom			
100	(d) All of the above	econ stom and order of one		1 0 9 5 0 5 4	o al Tha
128.		rogen atom are order of ener e atom in second excited state			EBSE PMT 1993]
	(a) 13.6 <i>volt</i>	(b) 1.51 V	(c) 1.51 <i>eV</i>	(d) 13.6 <i>eV</i>	
129.	Which of the following is	true			[MP PET 1993]
	(a) Lyman series is a cont	inuous spectrum			
	(b) Paschen series is a lin	e spectrum in the infrared			
		spectrum in the ultraviolet			
	(d) The spectral series for	rmula can be derived from the	Rutherford model of the h	nydrogen atom	
130.		spectrum has an upper and lo gth equal to 18752 Å is (Rydb	•	-	ries which has [MP PMT 1993]
	(a) Balmer series	(b) Lyman series	(c) Paschen series	(d) Pfund ser	ries
131.		e light when it changes from r n it changes from the $n = 5$ lev		= 2 level. Which	colour of light [KCET 1993]
	(a) Red	(b) Yellow	(c) Green	(d) Violet	
132.	The wavelength of radiation	on emanating from transition	of an atom		
	(i) From electronic state	A to C and			
	(ii) From electronic state	B to C are 1000 Å and 500	00 Å respectively. What is	s the wavelengt	h of radiation

CLICK HERE

>>

emanating from transition of the atom from state A to B

Get More Learning Materials Here :

🌐 www.studentbro.in

	(a) 4000 Å	(b) 2000 Å	(c) 1250 Å	(d) 500 Å	
33.	The ionization energy of transition between 3rd and	hydrogen atom is 13.6 <i>eV</i> . F d 4th orbit is	ollowing Bohr's theory, the	•••	sponding to a BSE PMT 1992]
	(a) 3.40 <i>eV</i>	(b) 1.51 <i>eV</i>	(c) 0.85 <i>eV</i>	(d) 0.66 eV	
34.	Which of the following pai	rs, have identical atomic stru	cture	[C	BSE PMT 1992]
	(a) Li^+, Na^+	(b) <i>He</i> , <i>Ne</i> ⁺	(c) <i>He</i> , <i>Li</i>	(d) C, N^+	
35.	As the electron in Bohr or	oit of hydrogen atom passes fi	from state $n = 2$ to $n = 1$, the	KE (K) and PE	(U) change as[
	(a) <i>K</i> two-fold, <i>U</i> also two	-fold (b)	K four-fold, U also four-fol	ld (c) <i>K</i> four-	fold, U two-fol
36.	The ionisation energy of 10	o times ionised sodium atom i	is		[DPMT 1991]
	(a) 13.6 <i>eV</i>	(b) 13.6 × 11 <i>eV</i>	(c) $\frac{13.6}{11} eV$	(d) $13.6 \times (11)^2$	eV
37.	If the electron in <i>H</i> atom r	adiates a photon of waveleng	th 4860 Å, the KE of the elec	ctron	[CPMT 1991]
	(a) Decreases by 2.0×10^{-19} $4.1 \times 10^{-19} J$ (d)	^{0}J (b) Increases by $8.2 \times 10^{-19} J$	Increases by $4.1 \times 10^{-19} J$	(c) Decreases	s by
38.		n atom, according to Bohr n tential for this atom will be	nodel, whose first ionizatio	n potential is	20 <i>V</i> , then the [RPMT 1989]
	(a) 5V	(b) 10V	(c) 15V	(d) 25V	
39.	The following diagram ind	licates the energy levels of a o	certain atom when the syste	em moves from	2E level to E .
	A photon of wavelength λ	is emitted. The wavelength	of photon produced during	its transition f	rom $\frac{4E}{3}$ level
	to E is		2 <i>E</i>		[CPMT 1989]
	(a) λ/3				
	(b) 3λ/4		4/3		
	(c) $4\lambda/3$				
	(d) 3λ				
40.	The energy levels of the l	nydrogen spectrum is shown	in figure. There are some t	transitions A, .	B, C, D and E .

[CPMT 1986, 88]

🕀 www.studentbro.in

$n = \infty$ n = 6 n = 5 n = 4 n = 3 n = 2	A	- 0.00 - 0.36 - 0.54 eV - 0.85 - 1.51 eV - 3.39 eV E
n=1 —	(\	– 13.5 eV

(a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series

(b) Ionization potential of hydrogen, second spectral line of Paschen series

(c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen series

(d) Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series

141. The orbital quantum number of subshell which contains 7 orbitals is[RPMT 1986]

(a) l=7 (b) l=3 (c) l=0 (d) None of these

142. When alpha particles are sent through a thin metal foil most of them go straight through the foil because[IIT-JEE 1984]

CLICK HERE

>>>

Get More Learning Materials Here : 📕

Transition A, B and C respectiv

				Atomic structure 79	
	(a) Alpha particles are n	nuch heavier than electrons	(b) Alpha particles are	e positively charged	
	(c) Most of the atom is e	empty space	(d) Alpha particles mo	ove with high velocity	
43.	A hydrogen atom moving	g with velocity $4m/s$ absorbs a	photon of wavelength λ	and stops. The value of λ will be	
	(a) 1000 <i>Å</i>	(b) 2000 <i>Å</i>	(c) 3000 Å	(d) 4000 <i>Å</i>	
44.				hydrogen atom at rest. Both th nat one of the atoms get excited	
	(a) $3.12 \times 10^6 \ m/s$	(b) $9.36 \times 10^5 \ m/s$	(c) $6.24 \times 10^4 \ m/s$	(d) $5 \times 10^3 m/s$	
45.	The angular momentum	of electron in hydrogen atom i	is proportional to		
	(a) \sqrt{r}	(b) 1/r	(c) r^2	(d) $1/\sqrt{r}$	
46		· · · ·			
46.	The frequency of revolution of electron in <i>n</i> th orbit is f_n . If the electron makes a transition from <i>n</i> th orbit to – 1)th orbit, then the relation between the frequency (ν) of emitted photon and f_n will be				
	(a) $v = f_n^2$	(b) $v = \sqrt{f_n}$	(c) $v = \frac{1}{f_n}$	(d) $v = f_n$	
47.	Two photons from excite must come from	ed atomic hydrogen are detect	ted. Their energies are 10	0.2 eV and 1.9 eV. These photor	
	(a) A single atom		(b) Two different ator	ns	
	(c) Either a single atom	or two atoms	(d) None of these		
48.	Goudsmit and Uhelenbed	ck postulated the concept of ele	ectron spin in order to ex	plain	
	(a) Hydrogen spectra		(b) Fine structure of hydrogen spectra		
	(c) Doublet structure of	Alkali metal spectra	(d) Elliptical orbit mo	tion of electrons in atom	
49.	The angular momenta of	electrons in an atom produce	S		
	(a) Magnetic moment	(b) Zeeman effect	(c) Light	(d) Nuclear fission	
50.	For an atom situated in a	a magnetic field, the number o	f possible orientations fo	or orbit with $n = 3$ are	
	(a) 9	(b) 7	(c) 5	(d) 3	
51.	In Bohr model of hydrog	en atom, the force on the elect	tron depends on the princ	cipal quantum number as	
	(a) $F \propto 1/n^3$	(b) $F \propto 1/n^4$	(c) $F \propto 1/n^5$	(d) Does not depend on <i>n</i>	
152.	-	n, both at rest initially, combi process. Then the wavelength		tom in the ground state. A singl	
	(a) 912 Å	(b) 3646 <i>Å</i>	(c) 8201 Å	(d) None of these	
53.	When a hydrogen atom e	emits a photon in going from <i>n</i>	n = 5 to $n = 1$, its recoil sp	eed is almost	
	(a) $10^{-4} m/s$	(b) $2 \times 10^{-2} m/s$	(c) 4 <i>m/s</i>	(d) $8 \times 10^2 m/s$	
154.	The ratio between total atom (both in ground sta		n singly ionized helium a	atom and doubly ionized lithiu	
	(a) $\frac{2}{3}$	(b) $\frac{4}{9}$	(c) $\frac{8}{27}$	(d) 1	
55.	Suppose the potential e	nergy between electron and	proton at a distance r is	s given by $-\frac{ke^2}{3r^3}$. Application of	
	Bohr's theory to hydroge	en atom in this case shows tha	t		
	(A) Energy in the <i>n</i> th or electron)	bit is proportional to n^6	(B) Energy is propor	ctional to m^{-3} (m = mass of	
	(a) Only (A) is correct		(b) Only (B) is correct		
	(c) Both (A) and (B) are	correct		(d) None are correct	

Get More Learning Materials Here : 📕

R www.studentbro.in

156. An electron with kinetic energy 5 *eV* is incident on a hydrogen atom in its ground state. The collision

- (a) Must be elastic
 (b) May be partially elastic
 (c) Must be completely inelastic
 (d) May be completely
- inelastic

157. Suppose, the electron in a hydrogen atom makes transition from n = 3 to n = 2 in $10^{-8} s$. The order of the torque acting on the electron in this period, using the relation between torque and angular momentum as discussed in the chapter on rotational mechanics is

(a) $10^{-34} N m$ (b) $10^{-24} N m$ (c) $10^{-42} N m$ (d) $10^{-8} N m$

158. The distance of the closest approach of an alpha particle fired at a nucleus with momentum p is r_0 . The distance of the closest approach when the alpha particle is fired at the same nucleus with momentum 2p will be

(a) $2r_0$ (b) $4r_0$ (c) $\frac{r_0}{2}$ (d) $\frac{r_0}{4}$

159. Radiations of wavelengths λ are incident on atoms of hydrogen in ground state. These atoms absorb fraction of these radiation. The excited atoms have ten different wavelengths in the emission spectrum. Then value of λ is

(a)
$$570 \text{ Å}$$
 (b) 750 Å (c) 590 Å (d) 950 Å

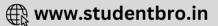
- **160.** Potential energy between a proton and an electron is given by $U = \frac{Ke^2}{3R^3}$, then radius of Bohr's orbit can be given
 - by

(a)
$$\frac{Ke^2m}{h^2}$$
 (b) $\frac{6\pi^3}{n^3}\frac{Ke^2m}{h^2}$ (c) $\frac{2\pi}{n}\frac{Ke^2m}{h^2}$ (d) $\frac{4\pi^2Ke^2m}{n^2h^2}$

161. The minimum kinetic energy of an electron, hydrogen ion, helium ion required for ionization of a hydrogen atom is E_1 in case electron is collided with hydrogen atom. It is E_2 if hydrogen ion is collided and E_3 when helium ion is collided. Then

(a)
$$E_1 = E_2 = E_3$$
 (b) $E_1 > E_2 > E_3$ (c) $E_1 < E_2 < E_3$ (d) $E_1 > E_3 > E_2$

- **162.** The wave number of first line of Balmer series in hydrogen atom is $1.52 \times 10^{6} m^{-1}$. The wave number of first line of Lyman series in Be^{3+} will be
 - (a) $2.43 \times 10^8 m^{-1}$ (b) $1.31 \times 10^8 m^{-1}$ (c) $5.44 \times 10^8 m^{-1}$ (d) $6.83 \times 10^8 m^{-1}$
- **163.** A photon of energy 10.2 *eV* corresponds to light of wavelength λ_0 . Due to an electron transition from n = 2 to n = 1 in a hydrogen atom, light of wavelength λ is emitted. If we take into account the recoil of the atom when the photon is emitted


(a)
$$\lambda = \lambda_0$$
 (b) $\lambda < \lambda_0$

(c)
$$\lambda > \lambda_0$$

(d) The data is not sufficient to reach a conclusion

Get More Learning Materials Here :

Assignments																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	d	а	b	а	d	b	С	b	а	b	а	с	С	а	а	d	С	а	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	d	С	b	b	а	С	d	d	d	b	а	d	b	а	d	а	с	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	с	b	С	b	а	С	С	d	b	d	d	d	b	d	а	b	b	d	с
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a, d	с	а	d	с	d	С	d	а	d	b	b	с	d	а	а	С	b	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	а	а	С	а	С	С	b	С	d	а	а	d	а	b	b	а	d	с	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	b	b	b	d	а	С	d	а	а	С	с	С	b	а	d	d	с	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	а	b	С	с	d	b	b	b	С	d	С	d	d	b	d	с	с	d	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	С	а	С	а	d	С	С	b	а	b	а	С	С	С	а	b	d	d	d
161	162	163																	
с	b	С																	

Get More Learning Materials Here : 📕

